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General Optimal Power flow Formulation

𝑚𝑖𝑛	 𝑓(𝑉, 𝜃, 𝑡, 𝜙, 𝑏, 𝑃𝐺, 𝑄𝐺)
𝑠. 𝑡. 𝑃𝑖(𝑉, 𝜃, 𝑡, 𝜙, 𝑏) + 𝑃𝑖𝐿 − 𝑃𝑖𝐺 = 0, 𝑖 = 1,⋯ , 𝑛𝐵

𝑄𝑖(𝑉, 𝜃, 𝑡, 𝜙, 𝑏) + 𝑄𝑖𝐿 − 𝑄𝑖𝐺 = 0, 𝑖 = 1,⋯ , 𝑛𝐵
𝑆𝑖𝑗 (𝑉, 𝜃, 𝑡, 𝜙, 𝑏) ≤ 𝑆�̅�𝑗 , (𝑖, 𝑗) ∈ 𝐿
𝑆𝑗𝑖 (𝑉, 𝜃, 𝑡, 𝜙, 𝑏) ≤ 𝑆�̅�𝑗 , (𝑖, 𝑗) ∈ 𝐿
𝑉𝑖 ≤ 𝑉𝑖 ≤ 𝑉𝑖@, 𝑖 = 1,⋯ , 𝑛𝐵
𝑡𝑖 ≤ 𝑡𝑖 ≤ 𝑡�̅� , 𝑖 = 1,⋯ , 𝑛𝑇
𝜙𝑖 ≤ 𝜙𝑖 ≤ 𝜙B𝑖, 𝑖 = 1,⋯ , 𝑛𝑃
𝑏𝑖 ≤ 𝑏𝑖 ≤ 𝑏𝑖@ , 𝑖 = 1,⋯ , 𝑛𝑆
𝑃𝑗𝐺 ≤ 𝑃𝑗𝐺 ≤ 𝑃B𝑗𝐺 , 𝑗 = 1,⋯ , 𝑛𝐺
𝑄𝑗𝐺 ≤ 𝑄𝑗𝐺 ≤ 𝑄B𝑗𝐺 , 𝑗 = 1,⋯ , 𝑛𝐺

 

Equality 
constraint
s
𝐶! 𝑥 = 0

Inequality 
constraint
s
𝐶" 𝑥 ≤ 0
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Stage I: 
OPF 

Constraint 
Analyzer

Stage II: 
Simple OPF 
w/o Thermal 

Limits

Stage III: 
Homotopy OPF 

w/ Active 
Thermal Limits

Stage IV: 
Sensitivity 

Analyzer for 
Discretization

Input Data OPF Result

System:
Buses: 13183
Loads: 9691
Generators: 2304
Branches: 18168
Transformers: 1410
Switched shunts: 

1404

OPF Dimensions:
Dimension of x: 31134
Nonlinear equality constraints: 

26366
Nonlinear inequality constraints: 0
Total equality constraints: 26367
Total inequality constraints: 35902

OPF Dimensions:
Dimension of x: 31134
Nonlinear equality constraints: 26366
Nonlinear inequality constraints: varying 

(<100)
Total equality constraints: 26367
Total inequality constraints: >35902 

(varying)
System:
Continuous variables: 

28320
Discrete variables: 2814

13183-Bus 
System (online 
case)

A Novel Homotopy-enhanced IPM to deal 
continuous and discrete decision variables. 
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Results: Real Power Loss Reductions (45% 
reduction) for 10 operating conditions
• Online data : from SCADA to State Estimator (real-time 

data) and apply a Continuation Power Flow to generate 
addition heavy loading operating points

2

3
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Loading 
Condition

One-Staged
Scheme

Multi-Staged
Scheme

1 Succeeded Succeeded
2 Succeeded Succeeded
3 Succeeded Succeeded

4 Succeeded Succeeded
5 Failed Succeeded
6 Failed Succeeded

7 Failed Succeeded

8 Failed Succeeded

9 Failed Succeeded

10 Failed Succeeded

Robustness of our method

ROBUSTNESS 

Two-Stage OPF method vs. Single-Stage Interior 
Point Method
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• Randomly assigned generator types and costs
Type # of Generators Min Cost

($/MWHr)
Max Cost

($/MWHr)
Mean Cost
($/MWHr)

Coal 40 % 11.0 282.0 26.0

Oil 15 % 31.0 1040.0 284.0

Nat. Gas 15 % 53.0 317.0 96.0

Hydro 26 % 0.0 0.0 0.0

Nuclear 2 % 0.0 0.0 0.0

Wind 2 % 0.0 0.0 0.0

Result 2: Generation Cost 
Minimization (40% reduction is 
possible)
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Result 2: Generation Costs



Convergence Analysis
Convergence analysis of our proposed, patented 4-stage OPF method

Bigwood Systems, Inc. Control Center 9
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Convergence analysis of our 
proposed, patented 4-stage OPF 

method is available.
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The complete constraint functions of the OPF problem can be
presented as the following equalities:

( ) 0, nH x x= ÎÂ

1( , , ) :T n m
mH h h= Â ®Â!where

, 
.

Definition 1: (Feasible region)
The feasible region of general OPF problems is the set of control variables in which all

the equality and inequality constraints of the problem are satisfied, i.e.,

2 1{ : ( ) ( , ( ), ( , )) 0}GNFR u H x H u y u s u y-= ÎÂ = =
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Purpose: to completely characterize the feasible region of the 
set of nonlinear constraint functions of OPF problems.

Approach: we consider the following nonlinear dynamical 
system, which is closely related to the nonlinear constraint 
functions:

( ) ( ) ( )T
Hx Q x DH x H x= = -!

where DH(x) is the Jacobian matrix of H(x).
We term the above system quotient gradient system (QGS).
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Theorem 4: (Complete characterization, Chiang and 
Jiang, 2018)
A path-connected set is a feasible component of

constraint set if and only if it is a regular stable
equilibrium manifold of QGS; i.e.,

1

r
j

j

FR
=

= S!
where r

jS is a regular stable equilibrium manifold of 
QGS.
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Theorem 5: (Chiang and Jiang, 2018)
Every trajectory of QGS converges to one of 
its stable equilibrium manifolds.

Complete stability and Global Convergence
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Bus-5 Bus-9

Bus-6 Bus-8

G

Bus-4

Bus-7

G G

Bus-1

Bus-3 Bus-2

Feasible Regions & SEMs

9-bus system
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Feasible Regions & SEMs of 9-bus system

(a)  Feasible regions on P1-P2 projection plane (b)  SEMs on P1-P2 projection plane
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Convergence regions for feasible regions
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For the 9-bus system
• There are 3 feasible regions
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Convergence regions for feasible regions

Convergence regions of QGS on tangent plane
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Theorem : (Chiang and Wang, 2018)
Consider an OPF problem with an objective function that is 
continuous and subject to a set of equality and inequality 
constraint functions (1)-(4). Suppose the equilibrium manifolds 
of the QGS (11) are isolated, pseudo-hyperbolic, and finite in 
number. Then, an OPF solution exists if and only if there is a 
regular SEM of QGS (12).

Necessay and sufficient Condition for 
the existence of an OPF solution



Theorem : (Chiang and Wang, 2018)
Consider an OPF problem with an objective function that is

continuous and subject to a set of equality and inequality constraint
functions (1)-(4). Suppose the equilibrium manifolds of the QGS (11)
are isolated, pseudo-hyperbolic, and finite in number. Then, the
number of local OPF solutions to the OPF problem is not less than
the number of regular SEMs of the QGS (12).

Lower Bound for the Number of OPF 
Solutions
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